If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2-9t+400=0
a = -4.9; b = -9; c = +400;
Δ = b2-4ac
Δ = -92-4·(-4.9)·400
Δ = 7921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7921}=89$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-89}{2*-4.9}=\frac{-80}{-9.8} =8+1/6.125 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+89}{2*-4.9}=\frac{98}{-9.8} =-10 $
| X-40=4x+40 | | 165. 17x^2+51x=0 | | (5(x))-14-(4(x))=-12 | | 5x-14-4x=-12 | | 4/x-4=x/x-4 | | 9x-2.3=3.2x+18 | | 2(5x+30)=40 | | z/0.5-1.4=5.4 | | n+11/30=17/20 | | 51112y−= | | 1.8+-y/0.1=30.8 | | n+98=50n | | 6(2+n)=18 | | 9/10=d/6.5 | | z/1.2+-0.9=-1.9 | | p÷6=5 | | n+46=24n | | 6x+7-10x=-5 | | 12=b5/2 | | b5/2=12 | | x/4+x=9/8 | | 3/4=8x | | 5x-5+9x+21=180 | | 5x-5=9x+21 | | −10+x+4−5=7x–5 | | -3x=2x15 | | x•2x=93 | | 2(-6b)+8b=-16 | | 2(-6b)+8b= | | 2x+1.5x=92.3125 | | 4x^2+89=-36x | | 1200+x=2825 |